Let $\mathrm{X}=\left(\mathrm{x}_{6}, 0, \mathrm{x}_{4}, \mathrm{x}_{3}, \mathrm{x}_{2}, 0, \mathrm{x}_{0}\right)$ be a 7 -bit unsigned number in which the indicated bit positions are fixed at 0 , and let $Y=\left(y_{5}, 0, y_{3}, y_{2}, 0, y_{0}\right)$ be a 6-bit unsigned number in which the indicated bit positions are fixed at 0 . Also, let $\mathrm{P}=\mathrm{XY}$ be the unsigned product of X and Y .
(a) (0.5 points) In decimal, give the minimum and maximum values for X, Y and P . Also, what is the minimum number of bits needed to represent P ?
(b) (1.5 points) Using only AND gates and a minimum number of full adders (each having inputs $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and outputs sum, $\mathrm{c}_{\text {out }}$), draw the diagram of a circuit to produce the product P . (You may connect nodes to the constant value 0 as needed.)
(c) (0.8 points) Consider the design of a functional block to compute $\mathrm{W}=\mathrm{P}+32 \mathrm{Z}$, where $\mathrm{Z}=\left(\mathrm{z}_{7}\right.$, $\mathrm{z}_{6}, 1,1,1, \mathrm{z}_{2}, \mathrm{z}_{1}, \mathrm{z}_{0}$) is an 8 -bit signed number in which the indicated bit positions are fixed at 1 and W is a signed number. (Here, a signed number is one that is represented using the two's complement number system.) In decimal, give the minimum and maximum values for Z and W . Also, what is the minimum number of bits needed to represent W without having any signed overflow?
(d) (1.2 points) Using only full adders, draw the diagram of a circuit to produce W having inputs P and Z , where W has the minimum number of bits as determined in part (c). (You may connect nodes to the constant value 0 or 1 as needed.)

